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ABSTRACT 
 
In this work we present an extension of a previously 
developed single-lead Wavelet Transform based ECG 
delineation system. A multiscale methodology is applied 
to detect and delineate P and T waves for a wide range 
of morphologies, taking advantage of the time-scale 
domain description provided by the Wavelet Transform. 
The performance was assessed using the QT database in 
which the algorithm presents a high sensitivity, both in P 
(98.87%) and T waves (99.77%). The waves are 
detected and delineated with mean errors smaller than or 
around 1 sample (4 ms) and standard deviation of the 
errors are comparable with the accepted differences 
between the cardiologists. The results obtained 
outperform other algorithms, in particular in the T wave 
end. 

1. INTRODUCTION 
 
The analysis of the ECG is extensively used as a 
diagnostic tool to provide information on the heart 
function. The delineation of ECG characteristic waves 
(by detecting their peaks and boundaries) supplies 
fundamental features for extracting clinically useful 
information: namely durations of physiological 
phenomena, expressed in the time intervals like PR and 
QT. Determination of these time intervals requires 
delineation of P and T waves, which is a particularly 
challenging task due to the low SNR and the lack of 
universally accepted criteria. Therefore, developing 
accurate and robust methods for automatic ECG 
delineation is a topic of main interest, in particular for 
the analysis of long records. 

The Wavelet Transform (WT) provides a 
description of the signal in the time-scale domain, 
allowing the representation of the temporal features at 
different resolutions, according to their frequency 

content. Noise and artefacts can be avoided considering 
their different contribution at various scales. A WT 
based QRS detector including single scale delineation of 
monophasic P and T waves was first proposed although 
not evaluated, in [1]. This approach was generalized in 
[2] to account (among other novelties) for different T 
wave morphologies. In this work we present an 
extension of [2] applying a multiscale methodology to 
detect and delineate P and T waves for a wide range of 
morphologies, integrated with the previously developed 
single-lead WT based ECG delineation system. 
 
2. METHODOLOGY 
 
2.1. Wavelet Transform  
 
The wavelet transform is a decomposition of the signal 
as a combination of a set of basis functions, obtained by 
means of dilation (a) and translation (b) of a single 
prototype wavelet ( )tψ  Thus, the WT of a signal ( )tx  is 
defined as 
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The greater is the scale factor a, the wider is the basis 
function, and consequently, the corresponding 
coefficient gives information about lower-frequency 
components of the signal, and vice versa. In this way, 
the temporal resolution is higher at high frequencies than 
at low frequencies, achieving the property that the 
analysis window comprises the same number of periods 
for any central frequency. 

The scale factor a and/or the translation parameter b 
can be discretized. The usual choice is to follow a 
dyadic grid on the time-scale plane: a=2k and b=2kl. 
The transform is then called dyadic wavelet transform, 
with basis functions  
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For discrete-time signals, the dyadic discrete 
wavelet transform (DWT) is equivalent, according to 
Mallat's algorithm, to an octave filter bank [3], and can 
be implemented as a cascade of identical cells (low-pass 
and high-pass FIR filters). This algorithm includes 
downsamplers after each filter to remove the redundancy 
of the signal representation, but as side effects they 
make the signal representation time-variant, and reduce 
the temporal resolution of the wavelet coefficients for 
increasing scales. To keep the time-invariance and the 
temporal resolution at different scales, we use the same 
sampling rate in all scales, what is achieved by removing 
the decimation stages and interpolating the filter impulse 
responses of the previous scale. This algorithm, called 
algorithme à trous [4], is shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Filter-bank implementation of DWT without 
decimation (algorithme à trous). 

 
2.2. Prototype wavelet 

 
We used as prototype wavelet a quadratic spline 
originally proposed in [5] that was already applied to 
ECG signals in [1] and [6]. The quadratic spline Fourier 
transform  
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easily allows to identify this wavelet as the derivative of 
the convolution of four rectangular pulses, i.e. the 
derivative of a low-pass function. It can be shown [5] 
that if the prototype wavelet ( )tψ is the derivative of a 
smoothing function ( )tθ , the wavelet transform of a 
signal ( )tx  at scale a is proportional to the derivative of 
the filtered version of the signal with a smoothing 
impulse response at scale a. 
Therefore, the zero-crossings of the WT correspond to 
the local maxima or minima of the smoothed signal at 
different scales, and the maximum absolute values of the 
wavelet transform are associated with maximum slopes 
in the filtered signal. Regarding our application, such 
type of prototype wavelet is very convenient as we are 
interested in detecting ECG waves, which are composed 
of slopes and local maxima (or minima). 

For the selected prototype wavelet, the filters H(z) 
and G(z) to implement the DWT as in Figure 1 are [1, 7] 
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which are FIR filters with impulse responses 
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Using the algorithme à trous and the filters H(z) 

and G(z) the equivalent frequency responses are those 
represented in Figure 2. According to the spectrum of 
the ECG signal waves [10], most of the energy of the 
ECG signal lies within the scales 21 to 25 with P and T 
waves having significant components at scales 24 and 25. 
Since the influence of baseline wandering is important at 
scale 25, this scale must be used carefully. 

 

 
Figure 2. Equivalent Frequency responses of the DWT 
at scales 2k, k=1,�,5 for 250 Hz sampling rate. 

 
2.3. P and T waves detection and delineation 
 
The multiscale detection and delineation the P and T 
waves are performed without any prefiltering and 
assuming a previous QRS detection. Search windows 
relative to the QRS position are defined for each beat 
taking into account the cardiac frequency. Within these 
windows, we look for local maxima of the [ ]nxW 42

 

and a P or T wave is considered to be present if at least 
two of the found maxima exceed a threshold 
proportional to the root mean square (RMS) of WT 
measured between two consecutive QRS. A local 
maximum is considered as a significant slope of the 
wave if its amplitude exceeds a threshold relative to  the 
maximum of [ ]nxW 42

 within the search window. 

Depending on the number and polarity of the found 
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maxima, one out of four possible P wave morphologies 
is assigned: positive (+), negative (-) and biphasic (+/- 
or -/+). For the T wave two additional morphologies are 
admitted: only upwards and only downwards. If a wave 
is not found at scale 24, we repeat the above process 
over the scale 25 on the correspondent search window. 
Attending to the loss of time resolution in the growing 
scales, the peak(s) of the P and T waves are taken as the 
zero crossing(s) at scale 23, if they exist, or at the scale 
2k in which the wave was found. 

The onset (end) of the waves lies before (after) the 
first (last) significant slope. Candidates to onset and end 
are determined in the scale 2k by applying two criteria: 

 
i) searching for the sample where [ ]nxW k2

 is below 

a threshold ξTon (ξTend) relative to the amplitude of 
the first (last) maximum modulus;  

 
ii) searching for a local minimum of [ ]nxW k2

 before 

(after) the first (last) maximum modulus.  
 
Finally the onset and end are selected as the candidates 
that supply the nearest sample to the P or T wave. 

 
2.4. Validation 
 
The validation was carried out using the QT database 
[8], which was developed for wave limits validation 
purposes. This database includes 105 ECG recordings 
(2-lead) at 250 Hz and it provides cardiologist 
annotations for at least 30 beats per recording (ref1), 
with marks including P and T waves peaks, onsets and 
ends. For 11 out of its 105 records, an additional 
annotation performed by a second cardiologist (ref2) is 
also provided. 

The wavelet-based delineator works on a single-
channel basis, while the manual annotation process was 
performed having in sight all available leads. Therefore, 
to compare, in a reasonable way, the manual annotations 
on the database with the two single-channel annotation 
sets produced by the delineator, we chose for each point 
the channel with less error. 

 
To assess the detection performance we calculated 

the Sensitivity 
FNTP

TPSe
+

=  where TP is the number 

of true positive detections and FN stands for the number 
of false negative misdetections. It is worthwhile to 
remark that given the format of this database, it was not 
possible to evaluate the performance in terms of the 
false positive misdetections, as it was already noted in 
[11]. As a matter of fact, when there is not an 
annotation, we do not know either if the cardiologist 
considered that no wave was present or if he simply 
believed that he could not confidently annotate the point 
(e.g. because of the noise). 

Regarding wave delineation, we calculated the 
errors as the time differences between automatic and 
cardiologist annotations, and calculated m as the average 
and s as the average standard deviation of the error, 
computed by averaging the intra-recording standard 
deviations. 
 
3. RESULTS 
 
The results obtained on the QT database with the WT-
based delineator (this work) are presented in Table 1. 
For comparison purposes we also included the results of 
a low-pass-differentiator-based method (LPD) [9] (for 
which a previous version had already been validated on 
the QT database in [12]), and the results for T peak and 
T end of the T-U complex detector recently proposed in 
[11]. In the last row, we include the accepted two-
standard-deviation tolerances given by the CSE working 
party from measurements made by different experts [13, 
Table 2]. 

Within the subset of the QTDB with double 
reference annotations, we compare the delineation errors 
with respect to both referees (ref1 and ref2) and the 
inter-cardiologist differences, obtaining the results 
presented in Table 2. Since the second cardiologist did 
not annotate any P wave, no results are given for this 
wave. 
 
 
 
 
 
 
 
 

Method Parameters P begin P peak Pend T peak T end 
 # annotations 3194 3194 3194 3542 3542 

Se (%) 98.87 98.87 98.75 99.77 99.77 This work 
m ± s (ms) 2.0±14.8 3.6±13.2 1.9±12.8 0.2±13.9 -1.6±18.1 

Se (%) 97.7 97.7 97.7 99.0 99.0 LPD 
m ± s (ms) 14.0±13.3 4.8±10.6 -0.1±12.3 -7.2±14.3 13.5±27.0 

Se (%) N/A N/A N/A 92.6 92.6 TU [11] 
m ± s (ms) N/A N/A N/A -12.0±23.4 0.8±30.3 

Tolerances 2sCSE (ms) 10.2 - 12.7 - 30.6 
Table 1. Delineation performance in the QT database. N/A: not applicable 
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Method Parameters T peak T end 
# annotations 3542 3542 WT vs ref 1 

all records m ± s (ms) 0.2±13.9 -1.6±18.1 
# annotations 487 487 WT vs ref 1 

11 records m ± s (ms) -0.6±8.9 -9.7±18.1 
# annotations 402 402 WT vs ref 2 

11 records m ± s (ms) 0.3±12.5 -10.8±20 
# annotations 402 402 inter-expert 

11 records m ± s (ms) 5.1±15.9 2.1±22.4 
Table 2. Delineation performance in the QT database considering both referees. 

 
 
4. DISCUSSION 
 
It is difficult to find in the published approaches explicit 
results for P and T waves delineation, despite the WT-
based detector allows to take advantage of the same 
wavelet analysis stage for ECG wave delineation. In [1] 
and [6], the possibility of detecting monophasic P and T 
wave peaks was stated, but not evaluated. Only in [14], 
an algorithm for detecting the peaks, onsets and ends of 
monophasic P and T waves was validated using the CSE 
multilead measurement database. A previous version of 
the delineation system here presented [2] was validated 
on QT database taking into account different T wave 
morphologies. The current version applies a multiscale 
methodology to detect and delineate P and T waves for a 
wide range of morphologies and presents improved 
results. 

According to the performance results our WT 
algorithm can detect annotated P and T waves with high 
sensitivity (Se=98.87% for the P waves and 99.77% for 
the T waves) with mean errors which are in all cases 
smaller than or around 1 sample (4 ms). The standard 
deviations are around 3 samples for the P wave and 3-4 
samples for the T peak and the T end. The comparison 
of our results with those of the LPD approach and the 
TU detector on the QT database show that our algorithm 
outperforms them clearly, particularly in the T wave 
end, which shows, in general, the greatest difficulty. 

Considering the values given by the CSE Working 
Party in [13, Table 2] as a reference for delineation error 
tolerances, WT an LPD detectors accomplish these 
criteria in QT database for P end and T end. Although, 
as this CSE tolerances were computed from a very 
different set of signals (number of channels, resolution, 
sampling frequency, quality and rhythms) the 
comparison with QT database results are not so 
straightforward. From the 11 recordings annotated by a 
second cardiologist we estimated the differences 
between the two annotations. It can be observed from 
the results presented in Table 2 that for T peak the error 
between the WT-based delineation system and each of 
the referees is lower or similar to the inter-cardiologist 
differences, while in the T end an appreciable bias is 
obtained for this 11 records, becoming insignificant 
when we take into account the whole database. Having 
annotation of more than one cardiologist in the whole 

QTDB is essential to improve the reliability of the 
validation. 
 
5. CONCLUSIONS 
 
In this work we present an extension of the previously 
developed single-lead WT based ECG delineation 
system by applying a multiscale methodology to detect 
and delineate P and T waves for a wide range of 
morphologies. 

Performance results show that our WT algorithm 
can detect annotated P and T waves with high sensitivity 
and can delineate them with errors comparable to the 
inter-expert variation, outperforming other approaches. 
This is particularly important in T wave end detection, 
which, in general, shows increased difficulty. 

According to our understanding, this performance 
improvement outcome from the multiscale approach, 
allowing to attenuate noise at rough scales, and then to 
refine the precision of the positions with the help of finer 
scales. 
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